OR
Try an applet here
|
![]() |
OR
Try an applet here
|
![]() |
|
Scaling transformation
\[Multiply each coordinate by a scaling factor: \begin{pmatrix} x^\prime\\ y^\prime \end{pmatrix} = \begin{pmatrix} s_x x\\ s_y y \end{pmatrix} \]
MATRIX FORM: \( \mathbf{P}^\prime = \mathbf{S} \mathbf{P} \)
\[\begin{pmatrix} x^\prime\\ y^\prime \end{pmatrix} = \begin{pmatrix} s_x & 0\\ 0 & s_y \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} \] |
![]() |
|
Rotation transformation
\[Rotate each vector around the origin: \begin{pmatrix} x^\prime\\ y^\prime \end{pmatrix} = \begin{pmatrix} \cos (\theta) x - \sin (\theta) y\\ \sin (\theta) x + \cos (\theta) y \end{pmatrix} \]
MATRIX FORM: \( \mathbf{P}^\prime = \mathbf{R}_\theta \mathbf{P} \)
\[\begin{pmatrix} x^\prime\\ y^\prime \end{pmatrix} = \begin{pmatrix} \cos (\theta) & - \sin (\theta)\\ \sin (\theta) & \cos (\theta) \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} \] |
![]() |
|
Translation transformation
\[Translation is a simple vectorial sum \begin{pmatrix} x^\prime\\ y^\prime \end{pmatrix} = \begin{pmatrix} x + t_x\\ y + t_y \end{pmatrix} \]
MATRIX FORM: \( \mathbf{P}^\prime = \mathbf{P} + \mathbf{T}\)
\[\begin{pmatrix} x^\prime\\ y^\prime \end{pmatrix} = \begin{pmatrix} x\\ y \end{pmatrix} + \begin{pmatrix} t_x\\ t_y \end{pmatrix} \] |
![]() |
|
Scaling: \( \mathbf{P}^\prime = \mathbf{S} \mathbf{P} \)
\[
\begin{pmatrix} x^\prime\\ y^\prime\\ w^\prime\\ \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0\\ 0 & s_y & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\ y\\ w\\ \end{pmatrix} \] \[ \Downarrow \] \[ \begin{pmatrix} s_x x\\ s_y y\\ w\\ \end{pmatrix} \Rightarrow \begin{pmatrix} s_x x / w\\ s_y y / w\\ \end{pmatrix} \] |
Rotation: \( \mathbf{P}^\prime = \mathbf{R}_\theta \mathbf{P} \)
\[
\begin{pmatrix} x^\prime\\ y^\prime\\ w^\prime\\ \end{pmatrix} = \begin{pmatrix} \cos (\theta) & -\sin (\theta) & 0\\ \sin (\theta) & \cos (\theta) & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\ y\\ w\\ \end{pmatrix} \] \[ \Downarrow \] \[ \begin{pmatrix} x \ cos (\theta) - y \sin (\theta)\\ x \ sin (\theta) + y \cos (\theta)\\ w\\ \end{pmatrix} \Rightarrow \begin{pmatrix} (x/w) \ cos (\theta) - (y/w) \sin (\theta)\\ (x/w) \ sin (\theta) + (y/w) \cos (\theta)\\ \end{pmatrix} \] |
Translation: \( \mathbf{P}^\prime = \mathbf{T} \mathbf{P} \)
\[
\begin{pmatrix} x^\prime\\ y^\prime\\ w^\prime\\ \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x\\ 0 & 1 & t_y\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\ y\\ w\\ \end{pmatrix} \] \[ \Downarrow \] \[ \begin{pmatrix} x + w t_x\\ y + w t_y\\ w\\ \end{pmatrix} \Rightarrow \begin{pmatrix} x / w + t_x\\ y / w + t_y\\ \end{pmatrix} \] |
| Rotation of \( \mathbf{p} \) around \( \mathbf{q} \) | 1 translate to the origin: \( \mathbf{T}_\mathbf{q} \mathbf{p} \) | 2 rotate around the origin: \( \mathbf{R}_\theta \mathbf{T}_\mathbf{q} \mathbf{p} \) | 3 translate back to \( \mathbf{q} \): \( (-\mathbf{T}_\mathbf{q}) \mathbf{R}_\theta \mathbf{T}_\mathbf{q} \mathbf{p} \) |
| \[ \mathbf{R}_x = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & \cos \theta & -\sin \theta & 0\\ 0 & \sin \theta & \cos \theta & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \] |
\[ \mathbf{R}_y = \begin{pmatrix} \cos \theta & 0 & \sin \theta & 0\\ 0 & 1 & 0 & 0\\ -\sin \theta & 0 & \cos \theta & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \] |
\[ \mathbf{R}_z = \begin{pmatrix} \cos \theta & -\sin \theta & 0 & 0\\ \sin \theta & \cos \theta & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \] |
| Invariant along the \( \mathbf{x} \) axis |
Invariant along the \( \mathbf{y} \) axis | Invariant along the \( \mathbf{z} \) axis |
![]() |
|
|
![]() |
![]() |
Orthographic projection
|
Perspective projection
|
| \[ \mathbf{P}_x = \begin{pmatrix} 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \] |
\[ \mathbf{P}_y = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \] |
\[ \mathbf{P}_z = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \] |
| Side view |
Top view |
Front view |
![]() |

| PREVIOUS:
EXERCICE01 |
NEXT: EXERCICE02 |